测量星际磁场哪家强?

标题:Magnetic Fields in High-Mass Infrared Dark Clouds
作者:Thushara Pillai, Jens Kauffmann, Jonathan C. Tan, Paul F. Goldsmith, Sean J. Carey, Karl M. Menten
论文索引:arXiv:1410.7390
编辑供稿:南京大学 吕行,國立清華大學 庆道冲

为什么要研究星际磁场?

据说在听天体物理的报告时,不论报告的题目是什么,一个万能的问题是:请问你的模型中考虑磁场了吗?可见磁场在天体物理各领域中的重要性。对于星际介质以及恒星形成,磁场当然也是必需考虑的重要问题。例如,分子云中的磁场和湍流可以对抗引力,否则分子云会在引力主导下Jeans碎裂,难以形成大质量的云核。再比如,分子云中常见的条形结构有可能是在磁场作用下形成的,见这篇astroleak的介绍。

关于分子云磁场研究的近况,可以参考这篇ARAA文章

测量星际磁场的几种方法

常见的测量星际磁场的方法大致可以分成两类:利用塞曼效应测量视线方向上的磁场强度;利用偏振测量天空平面上的磁场方向和强度。后者还包括尘埃的偏振(毫米波、亚毫米波、红外、光学都可测量)和CO分子的偏振(利用Goldreich-Kylafis效应),比如Planck测量的就是尘埃的偏振。另外测量星系际磁场常用Faraday rotation方法

塞曼效应测磁场相对来说比较直观,找到合适的谱线,观测到塞曼分裂的三条线,就能计算视线方向的磁场强度。目前可以探测到塞曼分裂的谱线有HI,OH,CN,以及一些脉泽。但是一般情况下它只能算视线方向的磁场强度,而且在分子云里找到合适的谱线不容易,比如OH和CN受化学反应的影响,不一定能探测到,而脉泽只有一个点,不能研究一块区域的磁场。

用偏振测磁场是基于有极性的粒子(尘埃颗粒或分子)在磁场作用下有序排列,导致自身的辐射或者吸收背景的辐射变成偏振光。偏振都是垂直于光线传播方向的,所以这个方法也只能测量天空平面上的磁场,而且单从偏振也不能知道磁场的强度。例如,在光学、红外波段,极化的尘埃吸收背景恒星的自然光,使其变成偏振光,于是我们就可以推测尘埃本身环境的磁场方向(和偏振方向平行)。而在毫米波/亚毫米波段,极化的尘埃本身的热辐射就是偏振的,比较Stokes分量就可以知道天空平面上磁场的方向(和偏振方向垂直)。当然,用Chandrasekhar-Fermi方法可以根据磁场的方向推测出强度,这首先需要测出足够大的区域内的磁场方向。

如何测量IRDC的磁场?

大质量红外暗云作为大质量恒星形成的摇篮,其磁场非常值得研究。例如,在小尺度上,如果能测得红外暗云中的无星核(starless core)的磁场,就能帮助我们理解磁场在早期分子云核演化和大质量恒星形成中的作用;在较大尺度上,研究磁场和红外暗云中条形结构的关系也很有意思。

可惜的是,上述的几个测量磁场的方法在红外暗云中都有局限性:红外暗云中不易找到合适的测塞曼效应的谱线;红外、光学偏振是基于尘埃吸收的,而红外暗云比较致密的部分吸收太强,看不到背景恒星;毫米波/亚毫米波的观测需要很高的灵敏度,因为一般尘埃的极化比例在百分之几左右,所以要得到同样的信噪比,需要的观测时间是一般尘埃观测的几十到一百倍,对于干涉仪来说这基本是不可能了,将来ALMA倒是可以尝试。所以目前最有效的方法就是单天线的毫米波/亚毫米波偏振观测了。

“蛇”和“肾”的磁场

本文就利用JCMT和CSO这两个单天线的毫米波/亚毫米波偏振观测测量了两个红外暗云的磁场,分别是著名的“蛇”云G11.11-0.12和“肾”/“砖”云G0.253+0.016。前者长得像一条细长的蛇,在银河系的半人马臂上,距离我们3.6 kpc。后者长得像iphone 6,在银心的CMZ中,距离8.4 kpc(参见这篇astroleak)。本文称这是首次对大质量恒星形成启动之前的红外暗云中的磁场的研究。

“蛇”的磁场,右图中的箭头代表磁场方向,来自Pillai et al. 2014 图1。
“蛇”的磁场,右图中的线段代表磁场方向,来自Pillai et al. 2014 图1。
“肾”的磁场,右图中箭头为磁场方向,来自Pillai et al. 2014 图2。
“肾”的磁场,右图中线段为磁场方向,来自Pillai et al. 2014 图2。

直接观测到的偏振的方向和实际磁场的方向是垂直的,所以要转90度才能得到磁场方向,注意这样得到的磁场方向有180度的不确定性(图中线段没有箭头)。而后作者利用Chandrasekhar-Fermi方法,根据磁场方向计算强度。简单地说,磁场会被分子云内的湍动所扰动,而磁场越强,磁冻结效应就越显著,扰动就越小。所以通过估计一片区域内磁场方向被扰动的程度就可以计算磁场强度。

在此作者使用“Spatial-Filtering”方法,去掉均匀的背景磁场,得到剩下的被扰动的磁场的方向。然后作者利用“Structure Function Analysis”,也就是两点相关函数,估计了背景磁场和被扰动磁场的强度比。这样就可以计算在天空平面上的总的磁场强度。作者进一步计算了阿尔文马赫数和质量-磁通量比,这两个量分别代表了磁场和湍流的相对强度,以及磁场和重力的相对强度。

由此,作者得到了几个重要结论:

(1). 两个云中的阿尔文马赫数小于1,表明磁场的作用强于湍流

(2). 质量-磁通量比略小于使云坍缩的临界值,表明磁场在支撑云的结构对抗引力中起到重要作用。之前仅基于动力学的研究已经指出,只考虑热运动和湍流时,云内结构的位力因子(位力质量/气体质量)远小于1,在引力作用下会迅速坍缩,所以需要磁场来支援。现在本文通过测量红外暗云中的磁场强度,直接证明了其中的磁场是对抗引力的主力。

(3). 只考虑热运动的金斯碎裂只能形成小质量(几个M_\odot)的云核,而大质量恒星如何形成就成了一个问题。如果磁场能阻止碎裂,就可能形成更大质量的云核,其中可以形成大质量恒星。这一点得到了模拟工作的验证。

    分享到:

One Reply to “测量星际磁场哪家强?”

Leave a Reply

Your email address will not be published. Required fields are marked *